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Abstract. We cast the problem of tracking several people as a graph
partitioning problem that takes the form of an NP-hard binary integer
program. We propose a tractable, approximate, online solution through
the combination of a multi-stage cascade and a sliding temporal window.
Our experiments demonstrate significant accuracy improvement over the
state of the art and real-time post-detection performance.

1 Introduction

In many surveillance or monitoring applications, one or more cameras view sev-
eral people that move in an environment. Multi-person tracking amounts to using
the videos from these cameras to determine who is where at all times.

Abstractly, a multi-person tracker takes as its input a set of observations. At
the lowest level, these are detections computed on each video frame by a person
detection algorithm, and consist of a bounding polygon that encloses the per-
son, together with an image position, a time stamp, an estimate of the person’s
velocity, and an appearance descriptor. For the sake of efficiency, intermediate
stages within the tracker may form higher-level observations by grouping de-
tections. The tracker then partitions the input observations into sets, with the
intent that each set corresponds to one person and vice versa. The literature
calls these sets identities or—when the linear time ordering of detections in a
set needs emphasis—trajectories.

Two major pairs of conflicting challenges make multi-person tracking hard.
Observations are ambiguous in that different people that look alike may be
confused with each other. Conversely, changing lighting, viewpoint, and other
circumstances may cause variance of appearance for a given person, which may
not be recognized to be the same in different observations. In the other pair of
challenges, person occlusions—whether caused by limited field of view, visual
obstacles between camera and person, or algorithm failure—generate gaps in
the input observations that make tracking harder. Conversely, overactive person
detectors may generate spurious observations that confuse the tracker. All of
these challenges already show up in the convenient nutshell of the single-camera
case, on which this paper is focused.

1.1 Overview of the Proposed Approach

Our tracker reasons about evidence for or against any two observations being
co-identified, that is, being assigned to the same identity. If the appearance de-
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scriptors of two observations are similar and their times and locations are consis-
tent with typical walking speeds, evidence for their co-identity is positive. If two
observations look different or occur at nearby time instants at faraway locations,
evidence is negative. In the limit, “hard” evidence may be available: Simultane-
ous observations at faraway locations cannot possibly correspond to the same
person, and yield “infinitely negative” evidence. “Infinitely positive” evidence,
on the other hand, denotes an irreversible commitment to a co-identification.
Infinite evidence, positive or negative, is equivalent to hard constraints on the
solution.

We associate evidence to the edges of an evidence graph that has one node
per observation and one edge for each pair of observations for which co-identity
evidence is available. Multi-person tracking then becomes a graph partitioning
problem.1 Specifically, the set of nodes is partitioned into subsets—one subset per
person identity—such that edges within sets accumulate high positive evidence,
and edges between sets accumulate high negative evidence. Casting multi-person
tracking as a graph partitioning problem is one of the main contributions of our
paper. As described later, the resulting problem is a Binary Integer Program
(BIP) when the input is finite.

Solving a BIP is NP hard. To address complexity, we introduce a cascade
with two phases that operate respectively on a short (one second) and a longer
(several seconds) time horizon. Each phase is in turn composed of two stages.
The first stage forms groups of weakly related observations safely, reasoning
about space and time in the first phase, and about appearance in the second.
Once these opportunistic and conservative groups are inexpensively formed, the
second stage in each phase partitions each group of observations into identities
by solving the corresponding BIP, enforcing both space-time and appearance
criteria optimally and simultaneously.

The input video in most surveillance or monitoring applications has no
bounded duration. Because of this, we embed the cascade above into an on-
line algorithm that slides a temporal window over the video stream and works
in real-time.

We compare our approach with closely related literature in Section 2. Section
3 describes our approach, Section 4 discusses experimental results, and Section
5 closes with concluding remarks and a discussion of future work.

2 Relationship to Prior Work

Multi-person tracking in video has a long history. In this Section, we compare
our method with other approaches based on evidence graphs.

Problem Formulation. Several methods limit evidence to pairs of observations
that are consecutive in time and can achieve polynomial complexity. These for-
mulations involve maximum-weight vertex-disjoint path cover [1, 2], a maximum

1 Graph partitioning is often called graph clustering in the literature. We avoid this
term to prevent confusion with other types of clustering we do in this paper.
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weight independent set problem [3], bipartite matching [4–8] or some variant
of network flow [9–13]. Methods that use stronger and more comprehensive ev-
idence have demonstrated superior performance. These methods consider evi-
dence from all observation pairs [14], observation triplets [15] or higher order
relationships [16–19]. The better performance however comes at a cost of in-
creased computational complexity due to the problem’s combinatorial nature.

Problem Decomposition. Despite these difficulties, several strategies have been
proposed in the literature to address computational complexity, such as (i) ap-
proximating the problem formulation, (ii) approximating the solution of the
problem [1, 3, 14, 20, 21], (iii) limiting the number of edges in the observation
graph [10, 11], (iv) relaxing constraints in the BIP [22–24] or (v) solving the
problem in stages for efficiency [3, 12, 14, 20, 21].

We stick to the original problem formulation and propose a tractable, approx-
imate solution for real-time multi-person tracking from a single video stream of
indefinite duration. Our approximation decomposes the full problem into smaller
subproblems and in two separate phases that examine short- and long-term time
horizons respectively. These smaller problems can be solved exactly with a BIP
solver, and the resulting solutions are pieced together post facto. This decom-
position results into a theoretically suboptimal solution. The key challenge is
then to define the decomposition so as to make partition errors unlikely. As we
show in Section 3.3, many opportunities arise to perform a preliminary partition-
ing of observations based on position and velocity in the short-term phase, and
on visual appearance in the long-term phase. If these opportunities are taken
conservatively, partition errors are infrequent, as we demonstrate empirically in
Section 4.

Online Algorithm. Several real-time multi-person tracking methods have been
proposed [3, 10, 11, 21], but they buy speed at a noticeable cost in terms of track-
ing accuracy. Similarly to previous work [1, 2, 21], we use a sliding temporal
window to work online. However, our extended cascade lets us process much
longer windows, and thereby achieve significantly higher accuracy and resilience
to occlusion. We can process video in real time at 25 frames per second on a
single PC while simultaneously improving over the state of the art on existing
data benchmarks. We share several technical aspects of our solution with exist-
ing approaches. Nonetheless, the multi-stage formulation and how the specific
algorithms are used in each stage make our cascade novel.

The work most similar to ours is that of Zamir et al. [14], who formulate multi-
person tracking as a sequential Generalized Minimum Clique Problem (GMCP)
decomposition of a complete graph of observations. As it is common in the lit-
erature, they also decompose computation into two stages for computational
efficiency, and can incorporate hard constraints on co-identity. We both allow
for evidence edges between any two observations, and both formulations are
NP-hard. However, we differ in two aspects. First, we formulate multi-person
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tracking jointly for all identities, while Zamir et al. handle identities sequen-
tially and greedily. Second, the formulation of Zamir et al. mandates that one
person must have exactly one observation per time frame in order to form a
clique. GMCP adds one hypothetical node for every time frame where the per-
son is missing. In scenarios of lengthy video and short person presence in the
scene, most observations in a person’s clique are hypothetical nodes outside the
field of view, unnecessarily increasing the problem complexity. In contrast, our
formulation is more general and considers only available evidence, and as a result
complexity depends solely on the number of observations, not sequence length.

In summary, the contributions of this paper consist of (i) a new, general graph
partitioning problem formulation which considers all the evidence between any
pair of observations at once; (ii) a generic approximation method for real-time,
online processing; and (iii) thorough experiments with an analysis of the trade-
offs in multi-person tracking and improvements in the state of the art.

3 Multi-person Tracking

Section 3.1 introduces a batch formulation of the multi-person tracking problem
in terms of a Binary Integer Program (BIP) that partitions the nodes of a graph
we call the evidence graph. Section 3.2 discusses how to compute the weights
on the edges of this graph. These weights measure evidence for or against two
observations being of the same identity (“co-identity”), and the intent is that
each of the sets in the computed partition corresponds to one identity. The BIP
in Section 3.1 is too large to solve for realistic input, and Section 3.3 describes
a four-stage cascade that computes the partition through successive refinements
from a single input set. The input set contains all the person detections from an
off-the-shelf detector. Section 3.4 then introduces a sliding-window method for
transforming the batch solution into an online algorithm that can process video
for an unbounded amount of time.

3.1 Tracking as a Graph Partitioning Problem

Consider a set V of n observations that could be individual outputs from a
person detector, or the results of aggregating co-identical detections with some
other method. For a pair of observations u, v in V , let wuv be a measure of
the evidence for or against the hypothesis that u and v are co-identical. Section
3.2 shows how this evidence can be computed from data. For now, it suffices
to say that evidence is quantified by a correlation, that is, a number in the set
{−∞, [−1, 1],+∞}. Positive values indicate evidence for co-identity, negative
values indicate evidence against, zero denotes indifference, and infinite values
correspond to definitive evidence (hard constraints).

Let the evidence graph G = (V,E,W ) be a weighted graph2 on V . If a
correlation is available for a pair of observations in V , an edge is added to set E

2 The graph can be directed from past to future in time, if simultaneous observations
cannot be co-identical, or undirected otherwise.
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for that pair, and its correlation is added to set W . In the following, we think of
G as being a complete graph, but nothing in our formulation depends on this.

A multi-person tracker partitions V into sets believed to refer to distinct
identities. Specifically, the partition maximizes the sum of the rewards wuv as-
signed to edges that connect co-identical observations and the penalties −wuv
assigned to edges that straddle identities. This graph partition problem can be
rephrased as the following BIP:

arg max
X

∑
(u,v)∈E

wuvxuv (1)

subject to
xuv ∈ {0, 1} ∀(u, v) ∈ E (2)

xuv + xvt ≤ 1 + xut ∀(u, v), (v, t), (u, t) ∈ E . (3)

The set X is the set of all possible combinations of assignments to the binary
variables xuv, with the interpretation that xuv is 1 iff the observations u and v are
co-identical. The constraints in Equation (3) enforce co-identity to be transitive:
If u and v are co-identical and so are v and t, then u and t must be co-identical
as well.

Considering all pairwise correlations has the advantage that even when some
edges carry negative correlation, the nodes they connect can still be co-identical
if the overall reward of the set is positive, and vice versa.

Finding an optimal solution to this BIP is NP-hard [25] and the problem is
also hard to approximate [26]. The best known approximation algorithm achieves
an approximation ratio of 0.7664 [27], but its semi-definite program formulation
makes it slow for practical consideration. Other algorithms exist and we describe
one of them in Section 4.4, but they come with no quality guarantees. These
results suggest that one needs to look at the special properties of the multi-
person tracking problem to find an efficient solution, as we do in Section 3.3. In
Section 3.2, we first consider how to compute the correlations wuv.

3.2 Features and Measures of Evidence

To manage computational complexity, the BIP defined in Section 3.1 is solved
first over individual person detections within small time horizons, and then
within longer time horizons and over short trajectories called “tracklets,” as
explained in Section 3.3 below. In this section, we show how observations of
both types are described, and how correlations are computed for pairs of them.

Each person detection D = (φ,p, t,v) is described by its appearance feature
φ, position p, time stamp t, and estimated velocity3 v. We use an HSV color
histogram to describe a person’s appearance, but different descriptors can be
used with no other modification of the proposed methods.

Co-identity evidence from space and time information comes mainly from the
assumption that people are limited in their speed, and reasoning about person

3 Velocity is a vector, and its norm is called the speed.
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Fig. 1. (a) Velocity estimation of the blue detection for m = 3. Circles are detections,
the horizontal dimension is time, and the vertical one stands for 2D space. Green de-
tections are the nearest detections in space to the blue detection for each k. Detections
in grey are not considered for velocity estimation. Detection p−1 is discarded because
the speed required to reach the blue detection from it exceeds a predefined limit. The
green vectors are the velocities computed for each blue-green detection pair and the
blue vector is the estimated velocity. (b) Circles enclose disjoint space-time groups,
found from assumed bounds on walking speed.

speed requires converting image coordinates to world coordinates. To this end, we
assume that people move on a planar region and that a homography is available
between the world and the image.

The velocity of a detection at position p in video frame i is estimated as
follows. For each frame k in [i−m, i+m] (where m is a small integer) and k 6= i,
determine the detection pk that is nearest (in space) to p. Compute the velocities
from each pair (p,pk), and discard those that violate a predefined speed limit.
The velocity estimate for the detection at p is then the component-wise median
of the remaining velocities. See Figure 1(a).

Tracklets (short trajectories of detections) have somewhat more complex de-
scriptors than individual detections, because they extend over time. Specifically,
a tracklet descriptor T̃ = {φ̃, p̃s, p̃e, t̃s, t̃e, ṽ} contains an appearance feature φ̃
that is equal to the median appearance of its detections. The descriptor also
contains the start point p̃s and end point p̃e of the tracklet, its start time t̃s and
end time t̃e, and its velocity ṽ. Since tracklets are short, we assume that their
detections are on a straight line and we approximate the velocity of the tracklets
as follows:

ṽ =
p̃e − p̃s

t̃e − t̃s
. (4)

Given two detections D1 = (φ1,p1, t1,v1) and D2 = (φ2,p2, t2,v2), we first
define two simple space-time and appearance affinity measures for them in [0, 1],
and then combine the affinities into a single correlation measure.

Specifically, the space-time affinity of D1 and D2 is:

sst = max[1− β (e(D1, D2) + e(D2, D1)), 0] (5)

where e(D1, D2) = ‖q1 − p2‖2 measures the error between the position p2 of
detection D2 and the estimated position q1 = p1 + v1(t2 − t1) of detection D1
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at time t2. The parameter β controls how much error we are willing to tolerate.
Setting a lower value for β is helpful for handling long occlusions. We use β = 1.

The appearance affinity between D1 and D2 is:

sa = max[1− αd(φ1,φ2), 0] (6)

where d(·) is a distance function in appearance space. We use the earth mover’s
distance [28] in our experiments to compare HSV histograms, and set α = 1.

A sigmoid function maps affinities to correlations smoothly, except in extreme
cases:

w =


−∞ if sasst = 0
+∞ if sasst = 1
−1 + 2

1+exp(−λ(sasst−µ)) otherwise
. (7)

The parameter λ determines the width of the transition band between negative
and positive correlation, and µ is the value that separates them. We use µ = 0.25,
assuming that sa = st = 0.5 indicates indifference.

The definition of appearance affinity remains the same for tracklets, once
appearance descriptors are modified as explained earlier. For space-time affini-
ties, the position error e(·, ·) is redefined to measure the discrepancy between a
tracklet’s start point and the estimated start point as determined from the end
point of the other tracklet: e(T̃1, T̃2) = ‖q̃s1 − p̃s2‖2 where q̃s1 = p̃e1 + ṽ1(t̃s2 − t̃e1).

3.3 The Cascade

Video stream Person 

detection
Appearance 

grouping

Tracklets 

(BIP)

Final 

trajectories
Sliding windows

(BIP)

Space-time

grouping

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 2. The proposed processing pipeline.

In preparation for the online method of Section 3.4, we describe a cascade
that allows solving the graph partitioning problem defined in Section 3.1 ap-
proximately and efficiently over a temporal window several seconds long. The
longer the window, the longer the occlusions through which identities can be
retained. Although we lose theoretical guarantees of optimality, we exploit the
special structure of multi-person tracking to decompose the large BIP problem
from Section 3.1 into manageable chunks that are unlikely to take us far from
the optimal solution.

Our cascade has two simpler phases divided into two stages each. The first
phase partitions detections over short time horizons and results into tracklets,
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short sequences of detections that can be safely connected to each other based
on both appearance and space-time affinities. The second phase reasons over the
entire temporal window, and partitions tracklets into identities (a.k.a. trajecto-
ries). Each phase has in turn a first stage that does a preliminary partitioning
done safely by simple means in order to reduce the size of the BIP in that phase,
and a second stage that solves a BIP exactly to utilize all evidence optimally.
The four stages are now described in turn.

Space-Time Groups. The first stage divides the entire video sequence into
1-second intervals and uses hierarchical agglomeration [29] to group detections
within each interval into space-time groups (Figure 1(b)). Initially, each detection
is in a separate group. The algorithm then repeatedly merges the pair of groups
that are closest to each other in space until ki space-time groups are formed for
time interval i. We set ki to one half of the expected number of visible people
in the given time interval, estimated as the ratio between the total number of
detections and the number of frames in the interval. Because of the conservative
choice of ki, it is unlikely that observations that belong together end up in
different groups. Even if they do, one person will end up split into different
identities, and the trajectory stage, described later, has an opportunity to undo
the split.

Tracklets. The second stage solves a BIP exactly for the observations of each
space-time group, using the correlations (7) for evidence. The resulting partitions
are called tracklets, and are at most one second long by construction. Solving
exact BIPs on space-time groups ensures that both appearance and space-time
evidence are used optimally within this short time horizon. Missing detections
are recovered using interpolation or extrapolation and tracklets shorter than 0.2
seconds are discarded as false positives.

Appearance Groups. The third stage reasons in appearance space and groups
tracklets from the entire temporal window into appearance groups that will be
processed independently of each other in the fourth stage. Non-parametric meth-
ods for discovering appearance groups [30] are a good fit for this stage. However,
we use k-means and set the number k of clusters manually for simplicity.

The wholesale splitting of identities across different appearance groups is
an irrecoverable error. However, appearance grouping is again conservative, in
that two observations are grouped whenever they are even just loosely similar.
The main assumptions in this stage are that a person’s appearance can have
only short-lived variations (e.g., partial occlusions or shadows) and that person
appearance does not change suddenly and dramatically (e.g., a person putting
on a rain coat while hidden behind an obstacle). The conservative nature of
this stage typically prevents identity-split errors, and a few incorrectly assigned
observations can be handled similarly to false positives and false negatives.

Trajectories. The last stage in the cascade solves a separate BIP (exactly)
for all the tracklets in each appearance group and within the entire temporal
window, again using both space-time consistency and appearance similarity as
evidence. Missing tracklets for each trajectory are inferred using interpolation,
and very short trajectories (shorter than 2 seconds) are discarded as false posi-
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tives. The reduction in the size of the BIPs in the second and fourth stage of our
cascade allows processing long temporal windows of data in real time, as Section
4 illustrates experimentally.

3.4 Unlimited Time Horizon

Typical surveillance video streams are unbounded in length and require real-
time, online processing. To turn the method described so far into an online algo-
rithm we employ a sliding temporal window. The temporal extent of the window
is set ahead of time—and depending on application—so that the observations
in it can be processed in real time. Video frames stream in continuously, and
an off-the-shelf person detector provides the needed detections. One-second-long
tracklets are continuously formed by stages 1 and 2 of the cascade, and added
to the input data. Once a window is processed completely as explained next, it
is advanced by half its temporal extent.

All the tracklets that are at least partially contained in the first window are
fed to the second phase of the cascade. Stages 3 and 4 form partial trajectories,
and missing and spurious observations are handled as explained in Section 3.3.
Partial trajectories are never undone, but they can be extended from data in sub-
sequent windows. In windows after the first, the elementary input observations
for stage 3 are all the tracklets and all the partial trajectories whose temporal
extents overlap the current window. Except for this difference, the computa-
tions are the same as in the first window. This process repeats forever. Figure 2
illustrates the complete processing pipeline.

The experiments in Section 4 illustrate that the cascade allows processing
rather long windows. As a consequence, we can often successfully connect peo-
ple identities across much longer occlusions than in previous literature, because
corresponding tracklets before and after an occlusion are more likely to occur
together in some window. For instance, our experiments show that for a medium
crowded scene the sliding window can be as long as 32 seconds if tracklets are
split into ten appearance groups, while still achieving real-time performance.

4 Experiments

4.1 Datasets and Performance Measures

We evaluate our algorithm on three standard single-camera datasets for multi-
person tracking: PETS2009 [31], Town Center [21] and Parking Lot [14]. We
used the PETS2009-S2L1 View 1 sequence, which has a resolution of 768 x 576
pixels and consists of 798 frames at 7 fps (117 seconds). The scene is not heavily
crowded, but the low predictability in people’s motion and a few long occlusions
behind a lamp post makes the sequence challenging. The Town Center sequence
is more challenging because it is longer, more crowded, and has longer occlusions.
Occlusions in this sequence are mainly caused by people walking very close to
each other. The sequence has a resolution of 1920 x 1080 pixels and consists of
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4500 frames at 25 fps (180 seconds). The Parking Lot sequence consists of 998
frames at 30 fps (33.26 seconds) and has a resolution of 1920 x 1080 pixels. This
sequence is challenging because it is filmed from an oblique angle and several
people have similar appearance. Also, people walk close to each other in parallel
causing long occlusions, both partial and full.

We use the standard Multiple Object Tracking Accuracy (MOTA) score [32]
to evaluate the performance of our algorithm. This score combines the number
of false positives fp(t), false negatives fn(t), and identity switches id(t) over all
frame indices t as follows:

MOTA = 1−
∑
t(fp(t) + fn(t) + id(t))∑

t g(t)
(8)

where g(t) is the ground-truth number of people in frame t. MOTA is widely
accepted in the field as one of the principal indicators of a tracker’s performance.

PETS2009

MOTA IDsw

Berclaz [11] 80.00 28

Shitrit [10] 81.46 19

Andriyenko [20] 81.84 15

Henriques [6] 87.95 10

Izadinia [12] 90.70 -

Zamir [14] 91.50 8

Ours 93.34 1

Town Center

MOTA IDsw

Benfold [21] 64.9 259

Zhang [13] 65.7 114

Leal-Taixe [33] 67.3 86

Izadinia [12] 75.70 -

Zamir [14] 75.59 -

McLaughlin [7] 76.46 -

Ours 78.43±0.29 68

Parking Lot

MOTA IDsw

Izadinia [12] 88.90 -

Zamir [14] 92.27 1

Ours 94.20 1

Table 1. Multi Object Tracking Accuracy (MOTA) and ID switches on three standard
datasets. MOTA variance for the Town Center sequence is a result of the randomness
of the k-means clustering algorithm, which in different runs yields differences in ap-
pearance groups.

In Table 1 we present results for all sequences. We outperform state of the
art methods in MOTA and identity switches. For a fair comparison, we use the
detections used in previous work [14], courtesy of the authors. All evaluations
are done using the CLEAR MOT evaluation script [34] and we use the standard
1 meter acceptance threshold.

In the PETS2009 sequence we use a long temporal window of 20 seconds
and one appearance group since the scene is not crowded. We allow tracklets
to be at most 10 frames in this sequence due to its low frame rate. The total
running time of our method, not accounting for person detection, is 38 seconds.
In the Town Center sequence we use a temporal window of 12 seconds and 5
appearance groups because the sequence is more crowded. Tracklets have lengths
of at most 20 frames. The total running time on this sequence is 176 seconds,
120 of which were spent finding all tracklets. In the Parking Lot sequence we use
a temporal window of 6 seconds and tracklets are at most 20 frames long. We
used one appearance group in this sequence since it is short. The total running
time on this sequence is 34 seconds.
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Fig. 3. MOTA scores (a, c) and running times (b, d) as functions of the length of
the sliding window (a, b) and the number of appearance groups (c, d) for the Town
Center sequence. Solver time indicates how much time was spent for assembling and
solving all the Binary Integer Programs. The total running time also includes the time
for computing correlations, but does not account for person detection. Figures (a) and
(b) are for ten appearance groups, and Figures (c) and (d) are for 8-second sliding
windows. Best viewed on screen.

4.2 Window Length, Accuracy, and Runtime

Figures 3(a) and 3(b) show the dependency of tracking accuracy and running
time on the length of the sliding window for the Town Center Sequence with 10
appearance groups. We ran several experiments on this sequence by progressively
elongating the temporal window.

Figure 3(a) shows that after the temporal window length is increased beyond
3 seconds, which corresponds to the typical occlusion length in the scene, there
is no significant improvement in the quality of the solution. The variations in
the graph are caused by differences in the appearance groups that the k-means
algorithm finds in each window. The slight decrease in the scores for windows
longer than 19 seconds is because the parameter β in Equation (5) also influences
how large partitions can grow in time.

Figure 3(b) shows how the sliding window length affects the running time.
Appearance grouping allows us to achieve an unprecedented temporal window
length for real-time computation.
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4.3 Appearance Groups, Accuracy, and Runtime

Figures 3(c) and 3(d) show the dependency of tracking accuracy and running
time on the number of appearance groups for the Town Center sequence with a
temporal window of 8 seconds.

Figure 3(c) shows that even a moderately high number of appearance groups,
around 20, has negligible harmful effects on the accuracy of the tracker. When the
number of appearance groups is increased further, the accuracy measure starts
to decay because identities are split into separate groups. The fluctuations in
the graph are again caused by the k-means algorithm, which over-clusters in
windows that contain few tracklets.

Figure 3(d) shows that the overall running time is greatly reduced when we
go from 1 to about 5 appearance groups, while the MOTA score only drops from
79% to 78.4% (Figure 3(c)). Increasing the number of appearance groups further
yields marginal reductions in running time. The slight increase in total runtime
for more than 20 appearance groups is caused by the k-means algorithm, whose
complexity increases with k.

4.4 Approximate and Exact Graph Partitioning Solvers

We explore the trade-off between accuracy and runtime for different combina-
tions of solvers for graph partitioning. We demonstrate that approximating the
solution of multi-person tracking by piecing together exact solutions of small sub-
problems is qualitatively better than algorithms with no optimality guarantees,
while still achieving real-time performance.

Three algorithms for graph partitioning have been recently proposed in the
literature [35], namely: Expand-and-Explore, Swap-and-Explore, and Adaptive
Label Iterative Conditional Modes (AL-ICM). We use the latter in our experi-
ment because of its speed and ability to scale to large problems. Given a labeling
vector L = {1, 2, . . .}n the algorithm assigns a label lu to observation u so as to
minimize the following energy function:

E(L) =
∑
uv

wuv1[lu 6=lv] (9)

where 1[P ] is 1 when P is true and 0 otherwise. Minimizing this energy function
is equivalent to maximizing rewards and minimizing penalties in Equation (1).
This energy is lowered when observations supported by negative correlation are
labeled differently and when observations supported by positive correlation are
labeled identically. This discrete energy minimization formulation has the ad-
vantage that the labeling vector L consists of n variables whereas the co-identity
matrix X in our formulation consists of n2 variables. This allows AL-ICM to
scale to n ≥ 100, 000 observations.

AL-ICM is a greedy search algorithm. In each iteration, every variable is
assigned the label that minimizes the energy, conditioned on the current label
of the other variables. While ICM requires a fixed number of labels [36], AL-
ICM handles a varying number of labels as follows: conditioned on the current
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PETS2009 Town Center Parking Lot

Method MOTA Runtime Solver MOTA Runtime Solver MOTA Runtime Solver

Izadinia [12] 90.70 - - 75.70 - - 88.90 - -

Zamir [14] 91.50 - - 75.59 - - 92.27 - -

O
u
r
s

AL-ICM 91.34 9.33 0.31 77.78 ± .35 107.54 3.52 93.33 15.69 0.39

AL-ICM-NoGroup 92.20 10.68 0.45 78.46 284.73 18.86 93.92 28.00 1.11

BIP 93.18 17.06 8.06 78.43 ± .29 177.17 73.10 94.20 33.59 20.40

BIP-NoGroup 93.18 27.43 16.87 78.87 25725.82 23444.58 94.20 334.45 307.39

Table 2. Different combinations of solvers evaluated on three standard datasets. The
length of each sequence is 117, 180 and 33.26 seconds respectively. Solver time indicates
how many seconds were spent for solving graph partitioning problems in each sequence.
The total running time also includes the time for computing correlations, but does not
account for person detection.

labeling, each observation is assigned to the most rewarding partition, or to a new
partition if penalized by all current partitions. The algorithm terminates either
when the energy cannot be minimized further or when a predefined number of
iterations is reached.

We construct two methods based on this algorithm. Method AL-ICM uses the
greedy algorithm in stages 2 and 4 of the cascade, and space-time and appearance
grouping in stages 1 and 3. Method AL-ICM-NoGroup uses the greedy algorithm
but no grouping, thus only stages 2 and 4 of the full cascade.

We refer to our full algorithm as BIP, and we compare it also to a method we
call BIP-NoGroup, that is, stages 2 and 4 of the cascade without space-time and
appearance grouping. Performance metrics for all methods on three sequences
are presented in Table 2.

Accuracy. All our methods consistently outperform the state of the art.
Even method AL-ICM is on par, if not better than the state of the art, although
it can be penalized by mistakes due to grouping heuristics and the suboptimal
greedy algorithm. The differences in accuracy between our methods that use
grouping and their corresponding version without grouping is minimal. This con-
firms that stages 1 and 3 of our cascade can be used in practice, safely and with
negligible harmful effects. It is also worth noting that piecing together optimal
solutions of small problems is superior to combining approximate solutions of
small problems, which is common in the literature: Both BIP and BIP-NoGroup
perform better than AL-ICM and AL-ICM-NoGroup, respectively.

Runtime. It is not surprising that the AL-ICM algorithm is much faster than
the BIP solver. AL-ICM is a greedy algorithm and does not require assembling
and solving a BIP with a quadratic number of variables and a combinatorial
number of constraints. We note that the use of grouping heuristics is crucial
for improving runtime performance; methods that do not use heuristics need to
compute large and full correlation matrices. While the best time performance is
that of AL-ICM, our BIP method is also fast enough to work in real-time at 25
fps.

Trade-offs. Considering the trade-offs between accuracy and runtime, the
BIP approach is appropriate when accuracy is important and the scene has
medium crowd density. The AL-ICM variant is more appropriate for time-critical
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applications or more crowded scenes, but comes with a cost in terms of accuracy.
In the absence of heuristics, which are not useful when the scene is crowded or
all appearances look the same, AL-ICM-NoGroup is the only method from the
above set that can be used to meet weaker time constraints.

4.5 Implementation

We implemented our algorithm in MATLAB and we used the Gurobi Optimizer
to solve the Binary Integer Programs. All experiments were done on a PC with
Intel i7-3610 2.3 GHz processor and 6 GB of memory. The results for the BIP-
NoGroup method in Table 2 were produced on a Linux machine with Intel Xeon
E5540 2.53 GHz processor and 96 GB memory in order to solve very large Binary
Integer Programs. The code and data to reproduce the above results are available
on the authors’ website.

5 Concluding Remarks and Future Work

We developed a general, efficient, online method for multiple person tracking
that outperforms the state of the art and can be used with any person detec-
tor, appearance feature, space-time heuristic, or similarity metric. Our graph
partitioning formulation accounts properly for evidence both for and against co-
identity, and can both force and forbid co-identity through hard constraints. A
cascade of stages that reason over short- and long-term time horizons exploits
safe groupings by space-time and appearance opportunistically to reduce compu-
tational complexity. We improve over the state of the art and achieve real-time,
online performance thanks to a sliding window approach. The windows can be
made long enough to handle very significant occlusions successfully.

Future improvements include replacing the k-means algorithm for appear-
ance grouping with clustering-forest techniques, which are more appropriate for
online data association; replacing appearance and space-time affinities with more
sophisticated metrics that depend on context; and making the temporal window
length adapt to data complexity in real time. We are also looking at how ad-
ditional constraints related to people entering and exiting the scene affect our
algorithm. In the long term, we plan to extend our methods to tracking from
multiple cameras.
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